Recitation 5: Series Solution of ODE

Lecturer: Chenlin Gu

Exercise 1. Determine the radius of convergence of the given power series:

- 1. $\sum_{n=0}^{\infty} (x-3)^n$;
- 2. $\sum_{n=0}^{\infty} \frac{x^{2n}}{n!};$
- 3. $\sum_{n=0}^{\infty} \frac{(2x+1)^n}{n^2};$
- 4. $\sum_{n=0}^{\infty} \left(\frac{2n}{e}\right)^{2n} \frac{x^{2n}}{(n!)^2}$.

Exercise 2. Determine the Taylor series about the point x_0 for the given function:

- 1. $f(x) = \sin x, x_0 = 0;$
- 2. $f(x) = \ln x, x_0 = 1;$
- 3. $f(x) = e^x, x_0 = 0.$

Exercise 3. *Prove that the bump function* f(x)

$$f(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & |x| \le 1, \\ 0 & |x| > 1, \end{cases}$$

is smooth, of compact support, but is not analytic, i.e. cannot be written as Taylor's series.

Exercise 4. Determine the coefficients a_n so that the equation

$$\sum_{n=1}^{\infty} na_n x^{n-1} + 2\sum_{n=0}^{\infty} a_n x^n = 0,$$

is satisfied. Try to identify the function represented by the series $\sum_{n=0}^{\infty} a_n x^n$.

Exercise 5. Prove that, for any absolute convergent series $(a_n)_{n \in \mathbb{N}}$, there exists another convergent series $(b_n)_{n \in \mathbb{N}}$ such that $\limsup_{n \to \infty} \frac{a_n}{b_n} = 0$.

Exercise 6. Let $a_1 = a_2 = 1$ and and $a_{n+2} = a_{n+1} + a_n$, $n \in \mathbb{N}$. This is the Fibonacci sequence. Let us find an explicit expression for a_n , $n \in \mathbb{N}$. Define $f(x) = \sum_{n=1}^{\infty} a_n x^n$.

- 1. Show that the power series has a positive radius of convergence.
- 2. Show that $f(x) = \frac{x}{1-x-x^2}$.
- 3. Write power series expansion for f(x) and give the explicit value of a_n .
- 4. $\dagger \dagger$ Prove that $gcd(a_n, a_m) = a_{gcd(n,m)}$. Here gcd means the greatest common divisor.