Recitation 5: Series Solution of ODE

Lecturer: Chenlin Gu

Exercise 1. Determine the radius of convergence of the given power series:

1. $\sum_{n=0}^{\infty}(x-3)^{n}$;
2. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$;
3. $\sum_{n=0}^{\infty} \frac{(2 x+1)^{n}}{n^{2}}$;
4. $\sum_{n=0}^{\infty}\left(\frac{2 n}{e}\right)^{2 n} \frac{x^{2 n}}{(n!)^{2}}$.

Exercise 2. Determine the Taylor series about the point x_{0} for the given function:

1. $f(x)=\sin x, x_{0}=0$;
2. $f(x)=\ln x, x_{0}=1$;
3. $f(x)=e^{x}, x_{0}=0$.

Exercise 3. Prove that the bump function $f(x)$

$$
f(x)=\left\{\begin{array}{cc}
e^{-\frac{1}{1-x^{2}}} & |x| \leqslant 1 \\
0 & |x|>1
\end{array}\right.
$$

is smooth, of compact support, but is not analytic, i.e. cannot be written as Taylor's series.
Exercise 4. Determine the coefficients a_{n} so that the equation

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

is satisfied. Try to identify the function represented by the series $\sum_{n=0}^{\infty} a_{n} x^{n}$.
Exercise 5. Prove that, for any absolute convergent series $\left(a_{n}\right)_{n \in \mathbb{N}}$, there exists another convergent series $\left(b_{n}\right)_{n \in \mathbb{N}}$ such that $\lim \sup _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$.
Exercise 6. Let $a_{1}=a_{2}=1$ and and $a_{n+2}=a_{n+1}+a_{n}, n \in \mathbb{N}$. This is the Fibonacci sequence. Let us find an explicit expression for $a_{n}, n \in \mathbb{N}$. Define $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.

1. Show that the power series has a positive radius of convergence.
2. Show that $f(x)=\frac{x}{1-x-x^{2}}$.
3. Write power series expansion for $f(x)$ and give the explicit value of a_{n}.
4. $\dagger \dagger$ Prove that $\operatorname{gcd}\left(a_{n}, a_{m}\right)=a_{\operatorname{gcd}(n, m)}$. Here gcd means the greatest common divisor.
